|
In fluid dynamics, vortex-induced vibrations (VIV) are motions induced on bodies interacting with an external fluid flow, produced by – or the motion producing – periodical irregularities on this flow. A classical example is the VIV of an underwater cylinder. You can see how this happens by putting a cylinder into the water (a swimming-pool or even a bucket) and moving it through the water in the direction perpendicular to its axis. Since real fluids always present some viscosity, the flow around the cylinder will be slowed down while in contact with its surface, forming the so-called boundary layer. At some point, however, this boundary layer can separate from the body because of its excessive curvature. Vortices are then formed changing the pressure distribution along the surface. When the vortices are not formed symmetrically around the body (with respect to its midplane), different lift forces develop on each side of the body, thus leading to motion transverse to the flow. This motion changes the nature of the vortex formation in such a way as to lead to a limited motion amplitude (differently, than, from what would be expected in a typical case of resonance). VIV manifests itself on many different branches of engineering, from cables to heat exchanger tube arrays. It is also a major consideration in the design of ocean structures. Thus study of VIV is a part of a number of disciplines, incorporating fluid mechanics, structural mechanics, vibrations, computational fluid dynamics (CFD), acoustics, statistics, and smart materials. ==Motivation== They occur in many engineering situations, such as bridges, stacks, transmission lines, aircraft control surfaces, offshore structures, thermowells, engines, heat exchangers, marine cables, towed cables, drilling and production risers in petroleum production, mooring cables, moored structures, tethered structures, buoyancy and spar hulls, pipelines, cable-laying, members of jacketed structures, and other hydrodynamic and hydroacoustic applications. The most recent interest in long cylindrical members in water ensues from the development of hydrocarbon resources in depths of 1000 m or more. Vortex-induced vibration (VIV) is an important source of fatigue damage of offshore oil exploration and production risers. These slender structures experience both current flow and top-end vessel motions, which give rise to the flow-structure relative motion and cause VIV. The top-end vessel motion causes the riser to oscillate and the corresponding flow profile appears unsteady. One of the classical open-flow problems in fluid mechanics concerns the flow around a circular cylinder, or more generally, a bluff body. At very low Reynolds numbers (based on the diameter of the circular member) the streamlines of the resulting flow is perfectly symmetric as expected from potential theory. However as the Reynolds number is increased the flow becomes asymmetric and the so-called Kármán vortex street occurs. The Strouhal number relates the frequency of shedding to the velocity of the flow and a characteristic dimension of the body (diameter in the case of a cylinder). It is defined as and is named after Čeněk (Vincent) Strouhal (a Czech scientist).〔Strouhal, V. (1878) ("Ueber eine besondere Art der Tonerregung" ) (On an unusual sort of sound excitation), ''Annalen der Physik und Chemie'', 3rd series, 5 (10) : 216–251.〕 In the equation fst is the vortex shedding frequency (or the Strouhal frequency) of a body at rest, D is the diameter of the circular cylinder, and U is the velocity of the ambient flow. The Strouhal number for a cylinder is 0.2 over a wide range of flow velocities. The phenomenon of lock-in happens when the vortex shedding frequency becomes close to a natural frequency of vibration of the structure. When this happens large and damaging vibrations can result. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Vortex-induced vibration」の詳細全文を読む スポンサード リンク
|